Package: stray 0.1.1

stray: Anomaly Detection in High Dimensional and Temporal Data

This is a modification of 'HDoutliers' package. The 'HDoutliers' algorithm is a powerful unsupervised algorithm for detecting anomalies in high-dimensional data, with a strong theoretical foundation. However, it suffers from some limitations that significantly hinder its performance level, under certain circumstances. This package implements the algorithm proposed in Talagala, Hyndman and Smith-Miles (2019) <arxiv:1908.04000> for detecting anomalies in high-dimensional data that addresses these limitations of 'HDoutliers' algorithm. We define an anomaly as an observation that deviates markedly from the majority with a large distance gap. An approach based on extreme value theory is used for the anomalous threshold calculation.

Authors:Priyanga Dilini Talagala [aut, cre], Rob J Hyndman [ths], Kate Smith-Miles [ths]

stray_0.1.1.tar.gz
stray_0.1.1.zip(r-4.5)stray_0.1.1.zip(r-4.4)stray_0.1.1.zip(r-4.3)
stray_0.1.1.tgz(r-4.4-any)stray_0.1.1.tgz(r-4.3-any)
stray_0.1.1.tar.gz(r-4.5-noble)stray_0.1.1.tar.gz(r-4.4-noble)
stray_0.1.1.tgz(r-4.4-emscripten)stray_0.1.1.tgz(r-4.3-emscripten)
stray.pdf |stray.html
stray/json (API)

# Install 'stray' in R:
install.packages('stray', repos = c('https://pridiltal.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pridiltal/stray/issues

Datasets:
  • data_a - A dataset with an outlier
  • data_b - A bimodal dataset with a micro cluster
  • data_c - A dataset with local anomalies and micro clusters
  • data_d - A wheel dataset with two inliers
  • data_e - A bimodal dataset with an inlier
  • data_f - A dataset with an outlier
  • ped_data - Dataset with pedestrian counts
  • wheel1 - Wheel data set with inlier and outlier.

On CRAN:

stray

5.47 score 58 stars 1 packages 34 scripts 214 downloads 4 exports 38 dependencies

Last updated 1 years agofrom:519b2e05b7. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winWARNINGNov 07 2024
R-4.5-linuxWARNINGNov 07 2024
R-4.4-winWARNINGNov 07 2024
R-4.4-macWARNINGNov 07 2024
R-4.3-winWARNINGNov 07 2024
R-4.3-macWARNINGNov 07 2024

Exports:display_HDoutliersfind_HDoutliersfind_thresholduse_KNN

Dependencies:clicolorspacefansifarverFNNggplot2gluegtableisobandkernlabKernSmoothkslabelinglatticelifecyclemagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6RColorBrewerRcpprlangscalestibbleutf8vctrsviridisLitewithr