Package: stray 0.1.1
stray: Anomaly Detection in High Dimensional and Temporal Data
This is a modification of 'HDoutliers' package. The 'HDoutliers' algorithm is a powerful unsupervised algorithm for detecting anomalies in high-dimensional data, with a strong theoretical foundation. However, it suffers from some limitations that significantly hinder its performance level, under certain circumstances. This package implements the algorithm proposed in Talagala, Hyndman and Smith-Miles (2019) <arxiv:1908.04000> for detecting anomalies in high-dimensional data that addresses these limitations of 'HDoutliers' algorithm. We define an anomaly as an observation that deviates markedly from the majority with a large distance gap. An approach based on extreme value theory is used for the anomalous threshold calculation.
Authors:
stray_0.1.1.tar.gz
stray_0.1.1.zip(r-4.5)stray_0.1.1.zip(r-4.4)stray_0.1.1.zip(r-4.3)
stray_0.1.1.tgz(r-4.4-any)stray_0.1.1.tgz(r-4.3-any)
stray_0.1.1.tar.gz(r-4.5-noble)stray_0.1.1.tar.gz(r-4.4-noble)
stray_0.1.1.tgz(r-4.4-emscripten)stray_0.1.1.tgz(r-4.3-emscripten)
stray.pdf |stray.html✨
stray/json (API)
# Install 'stray' in R: |
install.packages('stray', repos = c('https://pridiltal.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pridiltal/stray/issues
- data_a - A dataset with an outlier
- data_b - A bimodal dataset with a micro cluster
- data_c - A dataset with local anomalies and micro clusters
- data_d - A wheel dataset with two inliers
- data_e - A bimodal dataset with an inlier
- data_f - A dataset with an outlier
- ped_data - Dataset with pedestrian counts
- wheel1 - Wheel data set with inlier and outlier.
Last updated 12 months agofrom:519b2e05b7. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 31 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:display_HDoutliersfind_HDoutliersfind_thresholduse_KNN
Dependencies:clicolorspacefansifarverFNNggplot2gluegtableisobandkernlabKernSmoothkslabelinglatticelifecyclemagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6RColorBrewerRcpprlangscalestibbleutf8vctrsviridisLitewithr